Chapter 5 - Test Kits
Forgive the wait between chapters, I've been a little busy of late (see GCC).
We've done covered pretty heavy stuff so far, so thank-you all for sticking with me. This chapter will be a little lighter, I don't plan on going too in depth into the reactions involved, just some general info. on test kits and how they work.
1 - The salt effect
The first thing that I want to mention is that freshwater and saltwater test kits follow the same reactions, for the most part. I didn't realize this until I was reading my test kits at home about a year ago that they were the same reactions as the analyses that I just set up for the Intro. to Chemical Oceanography lab. The biggest difference in them is something called the 'salt effect'.
When something is dissolved a few things can happen: the molecule can sit, surrounded by solvent, it can dissociate into ions (electrolytes, you may say) supported by the solvent, or it can react with the solvent (as does CO2 and acids and bases in water). When salt dissolves in water, it dissociates into positive (cations, pronounced cat-ion) and negative ions (anions, pronounced anne-ions). These ions do not merely sit there, otherwise the salt would never have dissociated, water molecules arrange themselves around the ions to decrease the charge. Nature doesn't like charges, they represent an imbalance, a localized charge means something is ordered, only through complete disorder can things be perfectly balanced. These water molecules are called the "waters of hydration", they are the water molecules used up to 'hydrate' the salt.
So consider it this way, you have a certain concentration of solute (that which is dissolved) in units of "amount of solute/amount of water". But when there's salt around, some of the water is used up to hydrate the salt. So your solute 'sees' less water, and as far as your test kits are concerned, there concentration is higher. It's not an error, because the salt occupies some of the water, the concentration is higher. This is called the 'salt effect' and it's the biggest difference between salt and freshwater tests.
2 - pH and KH
The two most straightforward tests you'll encounter are pH and KH. The former uses a compound that changes colour called an indicator. Indicators are coloured molecules that react with H+ to gain, lose or change their colour. Remember the dissociation constant, kd? It's the same concept, more H+ present, more indicator will exist as 'HA'. Bromothymol blue is a popular choice for pH levels from low 6's to the low 7's. It has a dull yellow colour in very stongly acidic solutions but begins to change from yellow to green as pH increases from 6 through 7 finally, around 7.6 it is dark blue and remains this colour as pH is increased. There are many indicators, most General Chemistry textbooks will have a full page table listing most of them with a colour band showing their colour change over their effective range.
KH incorporates an acid-base indicator with a strong acid titration. In a titration, a measured volume of a compound with known concentration is added to a known volume of analyte with unknown concentration. It is critical that the reaction between the analyte and the added compound be well known, that way you can say that every X amount of compound that I add is equivalent to Y amount of analyte. If you know how they react, how much you've added, and what volume of unknown you started with, that only leaves one unknown, the amount of analyte in the known volume. And since you know how it reacts with the added compound, you can figure that out! Titration is one of the most robust methods of analysis.
I refer you back to the definition of alkalinity/KH in Chapter 2. Note the presence of H+ in the equation. Remember that the components of KH/alkalinity are all strong bases and will react with a strong acid, removing it. The reaction that we need to know is that one H+ will react with each negative charge from a strong base. You want to add exactly enough H+ to neutralize all the strong bases. How is this done:
Your test kit provides you with a bottle of strong acid, likely HCl, and instructs you to count drops (they've measured the volume of each drop). You fill the test tube up to the little line, so you know the volume of your sample. An indicator (bromothymol blue (btb) is a great one for this purpose) is added which makes a sharp colour change in the presence of excess H+. As soon as the btb changes from dark blue to pale yellow, you know that you've removed every last trace of strong base and now have an excess of H+. So now you have added a known volume of known concentration of a compound that reacts in a known manner with a compound of unknown concentration in a known volume. The equation: C1V1=C2V2 is used to calculate concentration. C1V1 means the concentration of the first solution times the volume of the first solution added. C2 is your unknown concentration and V2 is the known volume. So your alkalinity would be:
Alkalinity = KH = (concentration of H- (as OH- equivalents)x(volume of H+ added)/volume of sample.
3 - Spectrometry
Species such as NH3/NH4+, NO2, NO3 and PO4 (analyte) are measured spectrometrically. Excess amounts of certain chemicals (reagents) are added that form coloured compounds when they react with the analyte. Since the reagents are added in excess, the intensity of the colour produced will depend on the amount of analyte present. Again the volume of analyte is critical.
The chemistry involved is not simple, for those interested in a deeper knowledge of exactly what is going on, the reactions, interferants, industrial methods, reagent prep. and such, I refer you to the excellent treatment:
"Methods of Seawater Analysis" edited by K. Grasshoff, K. Kremling, and M. Ehrhardt, published by Wiley-VCH, 1999.
Standards, solutions of accurately and precisely known concentrations are prepared. These standards of different concentrations are treated the same way as the samples. The intensity of colour produced is a function of concentration, which is known. The intensity is measured by an instrument called a spectrophotometer which measures the amount of light of a certain colour (wavelength) that passes through a sample and compares it to the amount of light that is emitted. This is called absorbance, it has no units and follows my favourite law: The Beer-Lambert law, okay, I just like the first guy involved.
Beer-Lambert sais, that for the appropriate conditions, which are set in the lab:
A (absorbance) = a*b*c (easy to remember, no?)
a is the molecular absorbtivity, it's a molecular property, specific to the coloured compound. a has been measured already, so it's a number that you look up in a text. b is the path length of the cell that contains the sample. Makes sense, the farther the light has to travel through the absorbing compound, the more that will be absorbed, this is fixed in the lab by running all samples through the same cell.
That leaves c, concentration. Since you've got standards of known concentration, you make a plot of A vs. c. a and b are fixed, so you get a straight line relating A to c. Now you run your sample and compare the Abasorbance that you measure to the standard curve, you've now determined concentration.
For all that's involved, spectrometry is one of the easiest and most bulletproof methods of analysis. It does require some initial preparation to ensure that you've accounted for the various requirements of the Beer-Lambert law, but once it's set up, a trained monkey could run the samples. Heck, I've even built a (crappy) spectrophotometer.
But obvioulsy this isn't practical, or economically feasable, for the average hobbyist, so the manufacturers run standard for us and print out the colours for us to compare to. Not something I'd want to try to publish a scientific paper from, but more than sufficient to know what's going on in an aquarium.
One last note of interest. NO3 test kits don't measure NO3, they measure NO2. Those of you with the Hagen/Nutrafin test kits may have noticed that the first two bottles look very similar to the two bottles provided with the NO2 kit, or that the colours are similar. That's because they are identical. The NO3 test uses a chemical called a reducing agent (a chemical which decreases the negative charge of a compound, or for biologists, removes oxygen) to convert NO3 to NO2 (that's the brown glass bottle for the Nutrafin types) then forms the same coloured compound as for NO2.
I can't resist throwing this in: For those very, very few of you out there who are keen on really getting to understand spectromoetry, as well as the optics involved and pretty much an in depth presentation of modern analytical spectrometry, there is no text I've found that is better than:
"Spectromchemical Analysis" by James D. Ingle Jr. and Stanley R. Crouch, published by Prentice Hall. This is not light reading.